Magnetic resonance fingerprinting (MRF)

نویسنده

  • Gaby Pell
چکیده

Understanding the need Quantitative vs Qualitative MRI data: The vast majority of common clinical MRI protocols rely on qualitative images reflecting the weighted effect of different tissue parameters. These contrast parameters include relaxation times, principally T1, T2 and T2*, as well as structural or functional quantities such as diffusion and blood flow. The absolute level of the signal values in these images is largely meaningless and the radiologist has to rely on prior knowledge and experience to discern abnormalities. This was however not how it was meant to be. Initial work during the formative years of MRS and MRI sparked great interest in the ability of the new technology to “quantify” tissue status with the goal of assessing pathological states. However, this promise has largely been left unfulfilled. This is due to a number of reasons, among which are the practical limitations in the common methods for quantification in which one sequence parameter is manipulated over multiple image acquisitions. Moreover, even if acquired, this information has not been found to be accurate and robust enough to identify states such as tumor staging. While efforts to speed up mapping sequences such as those for relaxometry has continued unabated, the application of these techniques has remained controversial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Resonance Fingerprinting by exploiting Low Rank

Magnetic Resonance Fingerprinting (MRF) is a relatively new approach that provides quantitative MRI measures using randomized acquisition. Extraction of physical quantitative tissue parameters is performed off-line, based on acquisition with varying parameters and a dictionary generated according to the Bloch equations. MRF uses hundreds of radio frequency (RF) excitation pulses for acquisition...

متن کامل

Multicompartment Magnetic Resonance Fingerprinting

Magnetic resonance fingerprinting (MRF) is a technique for quantitative estimation of spinrelaxation parameters from magnetic-resonance data. Most current MRF approaches assume that only one tissue is present in each voxel, which neglects the tissue’s microstructure, and may lead to artifacts in the recovered parameter maps at boundaries between tissues. In this work, we propose a multicompartm...

متن کامل

3D Magnetic Resonance Fingerprinting with a Clustered Spatiotemporal Dictionary

We present a method for creating a spatiotemporal dictionary for magnetic resonance fingerprinting (MRF). Our technique is based on the clustering of multi-parametric spatial kernels from training data and the posterior simulation of a temporal fingerprint for each voxel in every cluster. We show that the parametric maps estimated with a clustered dictionary agree with maps estimated with a ful...

متن کامل

A Compressed Sensing Framework for Magnetic Resonance Fingerprinting

Inspired by the recently proposed Magnetic Resonance Fingerprinting (MRF) technique, we develop a principled compressed sensing framework for quantitative MRI. The three key components are: a random pulse excitation sequence following the MRF technique; a random EPI subsampling strategy and an iterative projection algorithm that imposes consistency with the Bloch equations. We show that theoret...

متن کامل

Magnetic Resonance Fingerprinting - a promising new approach to obtain standardized imaging biomarkers from MRI

Current routine MRI examinations rely on the acquisition of qualitative images that have a contrast "weighted" for a mixture of (magnetic) tissue properties. Recently, a novel approach was introduced, namely MR Fingerprinting (MRF) with a completely different approach to data acquisition, post-processing and visualization. Instead of using a repeated, serial acquisition of data for the characte...

متن کامل

Deep Learning for Magnetic Resonance Fingerprinting: A New Approach for Predicting Quantitative Parameter Values from Time Series

The purpose of this work is to evaluate methods from deep learning for application to Magnetic Resonance Fingerprinting (MRF). MRF is a recently proposed measurement technique for generating quantitative parameter maps. In MRF a non-steady state signal is generated by a pseudo-random excitation pattern. A comparison of the measured signal in each voxel with the physical model yields quantitativ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017